Feature Tracking and Video Textures

CS448V - Computational Video Manipulation

April 2019

Feature Tracking

Why is motion of features useful?

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Lucas-Kanade Flow

Overconstrained linear system:

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix} A = b$$

$$(A = b)$$

$$(A$$

Slide credit: Savarese

Slide credit: Savarese

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

High Texture Region

Revisiting Small Motion Assumption

Is this motion small enough? Probably not—it's much larger than one pixel (2nd order terms dominate) How might we solve this problem?

9

Group KLT points by puppet Update transform from KLT motion Use SIFT to correct KLT drift

Video Textures

Video Textures. Arno Schoedl, Richard Szeliski, David Salesin and Irfan Essa, SIGGRAPH 2000.

Weather Forecasting for Dummies[™]

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be {Sunny, Cloudy, Raining}

The "Weather Channel" algorithm:

- Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
- Compute percentages for each state:
 - P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It's a Markov Chain

Slide credit: Efros

Text Synthesis

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Slide credit: Efros

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Problem Statement

video clip

video texture

Transition from i to j if successor of i is similar to j Cost function: $C_{i \rightarrow j} = D_{i+1,j}$

Preserving Dynamics

$\begin{array}{l} \textbf{Descending Dynamics}\\ \textbf{Cost for transition } i \rightarrow j \\ \textbf{C}_{i \rightarrow j} = \sum_{k=-N}^{N^{-1}} w_k D_{i+k+1, j+k} \\ \hline \bullet i \rightarrow j \quad \bullet j$

Preserving Dynamics – Effect

Cost for transition $i \rightarrow j$

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost – Effect

Visual Discontinuities

Problem: Visible "Jumps"

Video Portrait

Useful for web pages

4/9/19

Video Portrait – 3D

Combine with IBR techniques

Region-Based Analysis

Divide video up into regions

Generate a video texture for each region

Automatic Region Analysis

What if motion regions overlap in space?

User-Controlled Video Textures

fast

User selects target frame range

Video-Based Animation

Like sprites computer games

Extract sprites from real video

Interactively control desired motion

Video Sprite Control

Need future cost computation

Precompute future costs for a few angles.

Switch between precomputed angles according to user input

[GIT-GVU-00-11]

"Amateur" by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo

Michel Gondry Train Video

https://www.youtube.com/watch?v=0S43IwBF0uM