Feature Tracking and Video Textures

Feature Tracking

Why is motion of features useful?

Feature Tracking

Why is motion of features useful?

Slide credit: Niebles and Krishna

Estimating Optical Flow

Given two subsequent frames, estimate the apparent motion field $u(x, y), v(x, y)$ between them

Key assumptions

- Brightness constancy: projection of the same point looks the same in every frame
- Small motion: points do not move very far
- Spatial coherence: points move like their neighbors

The brightness constancy constraint

Brightness Constancy Equation:

$$
I(x, y, t-1)=I(x+u(x, y), y+v(x, y), t)
$$

Linearizing the right side using Taylor expansion:

$$
\begin{aligned}
& I(x+u, y+v, t) \approx I(x, y, t-1)+I_{x} u(x, y)+I_{y} \cdot v(x, y)+I_{t} \\
& I(x+u, y+v, t)-I(x, y, t-1)=I_{x} \cdot u(x, y)+I_{y} \cdot v(x, y)+I_{t}
\end{aligned}
$$

Hence, $I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0 \rightarrow \nabla I \cdot\left[\begin{array}{ll}u & v\end{array}\right]^{T}+I_{t}=0$

Computing Derivatives

$$
\begin{aligned}
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \text { first image } \quad\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right] \text { first image } \quad\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] \text { first image }} \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \text { second image }\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right] \text { second image }\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { second image }} \\
& I_{x} \\
& I_{y} \\
& I_{t}
\end{aligned}
$$

The brightness constancy constraint

Can we use this equation to recover image motion (u, v) at each pixel?

$$
\nabla I \cdot\left[\begin{array}{ll}
u & v
\end{array}\right]^{T}+I_{t}=0
$$

How many equations and unknowns per pixel?
One equation (this is a scalar equation!), two unknowns (u, v)

The component of the flow perpendicular to the gradient (i.e., parallel to an edge) cannot be measured

The aperture problem

The aperture problem

Slide credit: Savarese

Solving the Ambiguity

How to get more equations for a pixel?

Spatial coherence constraint:

Assume the pixel's neighbors have the same (u,v)
If we use a 5×5 window, that gives us 25 equations per pixel

$$
\begin{gathered}
0=I_{t}\left(\mathbf{p}_{\mathbf{i}}\right)+\nabla I\left(\mathbf{p}_{\mathbf{i}}\right) \cdot\left[\begin{array}{ll}
u & v
\end{array}\right] \\
{\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{25}\right) & I_{y}\left(\mathbf{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathbf{p}_{1}\right) \\
I_{t}\left(\mathbf{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right]}
\end{gathered}
$$

Lucas-Kanade Flow

Overconstrained linear system:
\(\left[$$
\begin{array}{cc}I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{\mathbf{2 5}}\right) & I_{y}\left(\mathbf{p}_{\mathbf{2 5}}\right)\end{array}
$$\right]\left[$$
\begin{array}{l}u \\
v\end{array}
$$\right]=-\left[\begin{array}{c}I_{t}\left(\mathbf{p}_{1}\right)

I_{t}\left(\mathbf{p}_{2}\right)

\vdots

I_{t}\left(\mathbf{p}_{\mathbf{2 5}}\right)\end{array}\right]\)| A | $d=b$ |
| :---: | :---: |
| 25×2 | 2×1 |
| 25×1 | |

Lucas-Kanade Flow

Overconstrained linear system:

$$
\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right] \quad \begin{gathered}
A \\
\hline 2 \times 2
\end{gathered} \quad d=b
$$

Least squares solution for \boldsymbol{d} given by $\left(A^{T} A\right) d=A^{T} b$

$$
\begin{gathered}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A
\end{gathered}
$$

The summations are over all pixels in the 5×5 window

Conditions for Solvability

Optimal (\mathbf{u}, v) satisfies Lucas-Kanade equation

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]} \\
A^{T} A & A^{T} b
\end{array}
$$

When is this Solvable?

- $A^{\top} A$ should be invertible
- $A^{\top} A$ should not be too small due to noise
- eigenvalues λ_{1} and λ_{2} of $\mathbf{A}^{\top} \mathbf{A}$ should not be too small
- $\mathbf{A}^{\mathrm{T}} \mathrm{A}$ should be well-conditioned
- $\lambda_{1} / \lambda_{2}$ should not be too large ($\lambda_{1}=$ larger eigenvalue)

$M=\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is the second moment matrix ! (Harris corner detector...)

- Eigenvectors and eigenvalues of $A^{\top} A$ relate to edge direction and magnitude
- The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
- The other eigenvector is orthogonal to it

Edge

$\sum \nabla I(\nabla I)^{T}$

- gradients very large or very small
- large λ_{1}, small λ_{2}
\qquad

Low Texture Region

$\sum \nabla I(\nabla I)^{T}$

- gradients have small magnitude
- small λ_{1}, small λ_{2}

High Texture Region

$\sum \nabla I(\nabla I)^{T}$

- gradients are different, large magnitudes - large λ_{1}, large λ_{2}

Revisiting Small Motion Assumption

Is this motion small enough?
Probably not-it's much larger than one pixel (2 $2^{\text {nd }}$ order terms dominate) How might we solve this problem?

Reduce Resolution

Course to Fine Estimation

Gaussian pyramid of image 1

Course to Fine Estimation

Optical Flow Results

Optical Flow Results

Video Puppetry: A Performative Interface for Cutout Animation. Connelly Barnes, David E. Jacobs, Jason Sanders, Dan B Goldman, Szymon Rusinkiewicz, Adam Finkelstein and Maneesh Agrawala, SIGGRAPH ASIA 2008.

Identification and Tracking: SIFT

+ Identifies and locates puppets
- Not real time

Identification and Tracking: KLT

+ Real time
- No identification

Identification and Tracking: SIFT + KLT

Group KLT points by puppet
Update transform from KLT motion
Use SIFT to correct KLT drift

Video Textures

Video Textures. Arno Schoedl, Richard Szeliski, David Salesin and Irfan Essa, SIGGRAPH 2000.

Weather Forecasting for Dummies ${ }^{\text {TM }}$

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be \{Sunny, Cloudy, Raining\}

The "Weather Channel" algorithm:

- Over a long period of time, record:
- How often S followed by R
- How often S followed by S
- Etc.
- Compute percentages for each state:
- $P(R \mid S), P(S \mid S)$, etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

Text Synthesis

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

Mark V. Shaney (Bell Labs)

Results (using alt. singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Still Photos

Video Clips

Video Textures

Problem Statement

video clip

video texture

Our Approach

How do we find good transitions?

Finding Good Transitions

Compute L_{2} distance $D_{i, j}$ between all frames

Similar frames make good transitions

Markov Chain Representation

Similar frames make good transitions

Transition Costs

Transition from i to j if successor of i is similar to j
Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition Probabilities

Probability for transition $\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{j}}$ inversely related to cost:

$$
P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

high σ

low σ

Preserving Dynamics

Preserving Dynamics

Preserving Dynamics

Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-\mathrm{N}}^{\mathrm{N}-1} w_{k} D_{i+k+1, j+k}
$$

Preserving Dynamics - Effect

Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-\mathrm{N}}^{\mathrm{N}-1} w_{k} D_{i+k+1, j+k}
$$

Dead Ends

No good transition at the end of sequence

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

- Q-learning

Future Cost - Effect

Visual Discontinuities

Problem: Visible "Jumps"

Crossfading

Solution: Crossfade from one sequence to the other

$$
\begin{aligned}
& \ldots \begin{array}{l:l:l:l}
\hline A_{i-2} & \frac{3}{4} & A_{i-1} & \frac{2}{4} \\
\hline A_{i} & \frac{1}{4} & A_{i+1} \\
\hline
\end{array} \\
& +\frac{1}{4} \begin{array}{|c:c:c}
\mathrm{B}_{\mathrm{j}-2} & +\frac{2}{4} \mathrm{~B}_{\mathrm{j}-1} & +\frac{3}{4} \mathrm{~B}_{\mathrm{j}} \\
\hline
\end{array} \\
& B_{i+1} \ldots \\
& \begin{array}{|l|l:l:l|l|l|}
\hline \mathrm{A}_{\mathrm{i}-2} & \mathrm{~A}_{\mathrm{i}-1} / \mathrm{B}_{\mathrm{i}-2} & \mathrm{~A}_{\mathrm{i}-1} / \mathrm{B}_{\mathrm{j}-2} & \mathrm{~A}_{\mathrm{i}-1} / \mathrm{B}_{\mathrm{j}-2} & \mathrm{~B}_{\mathrm{j}+1} \\
\hline
\end{array}
\end{aligned}
$$

Crossfading

Frequent Jump \& Crossfading

Video Portrait

Useful for web pages

Video Portrait - 3D

Combine with IBR techniques

Region-Based Analysis

Divide video up into regions

Generate a video texture for each region

Automatic Region Analysis

What if motion regions overlap in space?

User-Controlled Video Textures

slow

variable

fast

User selects target frame range

Time Warping

Lengthen / shorten video without affecting speed

Video-Based Animation

Like sprites computer games
Extract sprites from real video
Interactively control desired motion

Video Sprite Extraction

blue screen matting
and velocity estimation

Video Sprite Control

Augmented transition cost:

Video Sprite Control

Need future cost computation
Precompute future costs for a few angles.
Switch between precomputed angles according to user input
[GIT-GVU-00-11]

Interactive Fish

What would be required to create video sprite of a human?

Panoramic Video Textures

Panoramic Video Textures. Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael F. Cohen, Brian Curless, David Salesin, Richard Szeliski. SIGGRAPH 2005.

"Amateur" by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo

Michel Gondry Train Video

https://www.youtube.com/watch?v=0S43IwBF0uM

